Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cytometry A ; 101(5): 423-433, 2022 05.
Article in English | MEDLINE | ID: covidwho-1640695

ABSTRACT

Imaging Mass Cytometry (IMC) is a powerful high-throughput technique enabling resolution of up to 37 markers in a single fixed tissue section while also preserving in situ spatial relationships. Currently, IMC processing and analysis necessitates the use of multiple different software, labour-intensive pipeline development, different operating systems and knowledge of bioinformatics, all of which are a barrier to many potential users. Here we present TITAN - an open-source, single environment, end-to-end pipeline that can be utilized for image visualization, segmentation, analysis and export of IMC data. TITAN is implemented as an extension within the publicly available 3D Slicer software. We demonstrate the utility, application, reliability and comparability of TITAN using publicly available IMC data from recently-published breast cancer and COVID-19 lung injury studies. Compared with current IMC analysis methods, TITAN provides a user-friendly, efficient single environment to accurately visualize, segment, and analyze IMC data for all users.


Subject(s)
COVID-19 , Data Analysis , Humans , Image Cytometry/methods , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Software
2.
SLAS Discov ; 26(9): 1079-1090, 2021 10.
Article in English | MEDLINE | ID: covidwho-1314244

ABSTRACT

The recent renascence of phenotypic drug discovery (PDD) is catalyzed by its ability to identify first-in-class drugs and deliver results when the exact molecular mechanism is partially obscure. Acute respiratory distress syndrome (ARDS) is a severe, life-threatening condition with a high mortality rate that has increased in frequency due to the COVID-19 pandemic. Despite decades of laboratory and clinical study, no efficient pharmacological therapy for ARDS has been found. An increase in endothelial permeability is the primary event in ARDS onset, causing the development of pulmonary edema that leads to respiratory failure. Currently, the detailed molecular mechanisms regulating endothelial permeability are poorly understood. Therefore, the use of the PDD approach in the search for efficient ARDS treatment can be more productive than classic target-based drug discovery (TDD), but its use requires a new cell-based assay compatible with high-throughput (HTS) and high-content (HCS) screening. Here we report the development of a new plate-based image cytometry method to measure endothelial barrier function. The incorporation of image cytometry in combination with digital image analysis substantially decreases assay variability and increases the signal window. This new method simultaneously allows for rapid measurement of cell monolayer permeability and cytological analysis. The time-course of permeability increase in human pulmonary artery endothelial cells (HPAECs) in response to the thrombin and tumor necrosis factor α treatment correlates with previously published data obtained by transendothelial resistance (TER) measurements. Furthermore, the proposed image cytometry method can be easily adapted for HTS/HCS applications.


Subject(s)
COVID-19/diagnostic imaging , High-Throughput Screening Assays/methods , Image Cytometry/methods , Respiratory Distress Syndrome/diagnostic imaging , COVID-19/diagnosis , COVID-19/virology , Cell Membrane Permeability/genetics , Drug Discovery , Endothelial Cells/ultrastructure , Endothelial Cells/virology , Humans , Image Processing, Computer-Assisted , Pandemics/prevention & control , Phenotype , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/pathology , Pulmonary Artery/virology , Pulmonary Edema/diagnosis , Pulmonary Edema/diagnostic imaging , Pulmonary Edema/virology , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/virology , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/diagnostic imaging , Respiratory Insufficiency/virology , SARS-CoV-2/pathogenicity , Thrombin/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
3.
J Virol Methods ; 286: 113979, 2020 12.
Article in English | MEDLINE | ID: covidwho-786045

ABSTRACT

Feline coronaviruses (FCoV) are members of the alphacoronavirus genus that are further characterized by serotype (types I and II) based on the antigenicity of the spike (S) protein and by pathotype based on the associated clinical conditions. Feline enteric coronaviruses (FECV) are associated with the vast majority of infections and are typically asymptomatic. Within individual animals, FECV can mutate and cause a severe and usually fatal disease called feline infectious peritonitis (FIP), the leading infectious cause of death in domestic cat populations. There are no approved antiviral drugs or recommended vaccines to treat or prevent FCoV infection. The plaque reduction neutralization test (PRNT) traditionally employed to assess immune responses and to screen therapeutic and vaccine candidates is time-consuming, low-throughput, and typically requires 2-3 days for the formation and manual counting of cytolytic plaques. Host cells are capable of carrying heavy viral burden in the absence of visible cytolytic effects, thereby reducing the sensitivity of the assay. In addition, operator-to-operator variation can generate uncertainty in the results and digital records are not automatically created. To address these challenges we developed a novel high-throughput viral microneutralization assay, with quantification of virus-infected cells performed in a plate-based image cytometer. Host cell seeding density, microplate surface coating, virus concentration and incubation time, wash buffer and fluorescent labeling were optimized. Subsequently, this FCoV viral neutralization assay was used to explore immune correlates of protection using plasma from naturally FECV-infected cats. We demonstrate that the high-throughput viral neutralization assay using the Celigo Image Cytometer provides a robust and efficient method for the rapid screening of therapeutic antibodies, antiviral compounds, and vaccines. This method can be applied to various viral infectious diseases to accelerate vaccine and antiviral drug discovery and development.


Subject(s)
Coronavirus Infections/veterinary , Coronavirus, Feline/isolation & purification , High-Throughput Screening Assays/veterinary , Image Cytometry/methods , Neutralization Tests/methods , Animals , Cat Diseases/diagnosis , Cat Diseases/virology , Cats , Cell Line , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Feline Infectious Peritonitis/diagnosis , Feline Infectious Peritonitis/virology , High-Throughput Screening Assays/methods , Image Cytometry/veterinary , Neutralization Tests/veterinary , Viral Load
4.
Cytometry A ; 97(7): 662-667, 2020 07.
Article in English | MEDLINE | ID: covidwho-621110

ABSTRACT

SARS-CoV-2 pandemic and recurrent dengue epidemics in tropical countries have turned into a global health threat. While both virus-caused infections may only reveal light symptoms, they can also cause severe diseases. Here, we review the possible antibody-dependent enhancement (ADE) occurrence, known for dengue infections, when there is a second infection with a different virus strain. Consequently, preexisting antibodies do not neutralize infection, but enhance it, possibly by triggering Fcγ receptor-mediated virus uptake. No clinical data exist indicating such mechanism for SARS-CoV-2, but previous coronavirus infections or infection of SARS-CoV-2 convalescent with different SARS-CoV-2 strains could promote ADE, as experimentally shown for antibodies against the MERS-CoV or SARS-CoV spike S protein. © 2020 International Society for Advancement of Cytometry.


Subject(s)
Antibody-Dependent Enhancement/immunology , Betacoronavirus/immunology , Coinfection/immunology , Dengue Virus/immunology , Receptors, IgG/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Dengue/immunology , Dengue/pathology , Humans , Image Cytometry/methods , Middle East Respiratory Syndrome Coronavirus/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL